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Summary

The paraxial trajectories in electron lenses are derived from an integral
cquation. The Liouville-Neumann expansions of the solutions of this
equation lcad to expressions for the magnification, the focal distances and
the positions of the focal points and cardinal points. The numbers of integra-
tions to be performed in the individual terms of the expansions used to
describe lens characteristics are reduced to half, as compared with the
normal treatment. The focal and cardinal peints are defined as osculating
clements similar to those introduced by Glaser.

§ 1. Introduction. The paraxial theory of rotationally symmetric
clectron lenses is bascd on the neglect of seccond and higher powers
of the distance p from the axis when deriving the cquation of motion
of the electrons. The lincar differential equation thus obtained is of
the following form for clectrons originally in a meridional plane:

d2

G+ K@y =0. 1)
The coordinate z refers to distances in the direction of the symme-
try-axis. In the most gencral casc of a combined clectrostatic and
magnetic lens the dependent variable is given by y = o(2)V} (0, 2),
V (g, 2) being the potential in e.s.u. of the clectric field. The cocffi-
cient %*(z) depends on the clectrostatic potential V(z) and the
magnetic field H(z) along the axis according to!)

Py = 3 v? o e H?

B T ) 2
16 V2 + 8mc? V @
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PARAXIAL CONSTANTS OF ELECTRON LENSES 417

The effect of space charge is neglected here.

Onlyin a few exceptional cases is k*(z) of such a form that (1) can
be solved analytically for a field approximately realized in practice.
In this connection we mention in particular the case

kg

W)=

(1 + 22
that corresponds to the beil shaped magnetic field
Hy,
1+ 2/a?’
which has been investigated thoroughly by W. Glaser?). This

field leads to expressions for o(z) that depend on trigonometric
functions, viz. .

H(z) =

22\% 2
e = 4145 Ysin {1 + B e tanZ — gl
a a - ‘

Further, a magnetic field corresponding to electron trajectories
described by Legendre functions is given by

H,
cosh (z/a) ©

H(z) =

The most general solution in this case, viz,

¢ = 4P, {tanh (2)} + 50, {tanh (2)} ,

depends on Legendre functions, the degree of which follows from
the relation ’
ea® 2
8mc2 V

As a rule, however, it is necessary to resort to some numerical
method or other in order to derive results from (1) when the field
distribution along the axis is given by experimental data. In parti-
cular, approximation methods introducing finite differences instead
of differential quotients have been frequently applied. A special.
method based on successive approximating integrations has been
worked out by M. v. Ments and J.B.Le Poole?). In the
present paper the méthod used by these authors is simplified by

(4 1) =
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418 11, BREMMER

lowering the number of integrations occurring in the various correc-
tion terms. The treatment is based on an integral equation discussed
in the next sections.

§ 2. Derivation of the paraxial inlegral equalion. lct us consider
the general casc of an immersion lens. The valuc A?(zo) of #2(2) at the
object plane z = z, may thus differ from zero. The equation to be
derived will refer to a special clectron trajectory, characterized by
the values vy and ygof y and dy/dz respectively at the object plane.
According to the relation y = oVt these quantities arc proportional
to the distance g, from the axis and to the tangent of the angle with
the z-axis at the object point from which the electron is starting. A
first integration of the paraxial equation, viz. d2y/ds? = — k(2) v,
then vields .

ly , c
ey D Yo / ds kz(;) }’(:)

‘o

dz
A sccond integration gives )
¥ = ¥o + ¥ 5 — 2) — [ %,/ 45 () 50)
‘o %0
By inverting the order of integration the double integral proves to
be equal to

3R ¥(3) [ A8, = /A2 #E) ¥(0) (e — 2.
4 P 9

11 is to be noted that this reduction lo a single intcgral halves the
numbers of inlegrations occurring in the expansions lo be dertved in the
Jollowing seclions.

We thus arrive at the following integral equation:

YD) = Yo+ yile— 20 —[AI R E— 0¥, @

which completely determines the paraxial behaviour of the lens
system. :

§ 3. Soluiion of the integral equation by the Liouville-Neumann
method. The first step in this method ) consists in substituting into
(3) for y(5) its value according to the cquation itsclf, that is

Y0 = Yo+ o (6 —2) — Fd5 () € — &) v,
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The evaluation of this first substitution yields

¥(2) = yo + yolr — 29) — e R(Z) (2 — &) {0 + 9o (0 — )} +

; : '
+ S ALRE) (z—0) S AL RA(L) (6= &) y(Ly). (4)

20
The second step amounts to substituting for y({,) in the last integral
once again its value according to (3), that is

14
_ Y(&) = vo + % (1 —2) —/[dE, kz@z) (& — &) v(&y).

The third step consists of a further application of (3) to y({,), and so
on. By repeating this procedure ad infinitum we obtain the series

Y(E) = o+ 9% (2 —20) = AZ BQ) (5 — ) {30+ 9 (6 — 7o)} +

: 4
A JALRAE) (2 — ) f AL (E,) (o= L0) {90 + 90 (& — )} —

P 4 4
— [ AT R(C) (z — £) /dé, FEy) (€ — Cl)r/‘ A, ’P(Ly) (&1 — &)~
Ao F v lo—2)+ ... (8)

This expansion with the aid of so-called #terated kernels represents
the exact solution of (3) in the case of convergence. A sufficient condi-
tion for convergence is that the product of the integration interval
and the maximum value of the main kernel should not exceed unity.
We are only interested in the space bounded by the object plane
2 == 2y and the corresponding image plane z = z;. The main kernel being
given by £*(¢) (z—¢), with a maximum valuc max £%(z) X (z,— 2,),
the above sufficient condition for convergence amounts to

max k(z) X (2 — z)? < 1.

IFor a magnetic lens this reduces to

8mc?

Iifmm (Z,” - ZO>2 < V_, (6)

or

HZ . (7 —2)° < 452V

it H,,,, 2, — 2, and V are expressed in gauss, centimetre and volt
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420 1. BREMMER

respectively. The condition (6) can be given in a more illustrative
form by replacing the magnetic field 1 by the curvature
muc

R=—
efl
of the trajectory of an clectron moving with velocity » perpendicular-
ly to a homogencous ficld of the same strength. The cquality (6)
then reads

2, —2,< 2R,

The expansions to be discussed in the next scctions therefore con-
verge more rapidly according as the quantity (2; — 2)/2 R,,,, is
smaller.

§ 4. Darticular solulions. Delerminalion of the tmage plane. The
expansion (5) disintegrates automatically into

Y(2) = Yo ¥1(2) + %o ¥2(2), )

in which occur two particular solutions y,(z) and y,(z) of the original
equation (1). These special solutions are given by

yl(z)=l_..;d:k2(; ) (z—2) +/d2 Q) (2 — )fdblkz(‘sl( —&)—

i)

-—_j:d::kz(;)(z—-g ) /AL R () (€ — &) fdsz WG —L+ ..., (8)

g

and

YaA2) = 2 — 25—

—fd (¢ (z—s)(,—zo)+fd;,k2(s) Z—C)fdf FHE) (E—€)) (6—20)—

—fd () z—0) fds.kz(s, )L, fd’zk’(sz) —) )+ - (9)

The solution y,(z) = V#(z) g,(z) is characterized by y,(z) = |
and ¥|(z) = 0. Thercfore y,(z) represents the trajectory of the
clectrons leaving the object at a point, a distance g,(z,) = 1/ Vi (z,)
away from the axis in a dircction to be detcrmined from y,(z,) = 0;
for magnetic lenses (V independent of z) this direction is parallel to
the axis. The function y,(z) = V*(2) g,(2) likewise describes the

For Release 1999/09/24 : CIA-RDP83-00423R002000130007-8
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betrons leaving the axis point of the object (v,(2;) = 0) in a direc-

n-determined by y,(z,) = 1 (see fig. 1).
ZeZy 27
t =Y/ V¥
6 (Zo')=i : =Y/
Wiz |
{

Y

O v ,
h § : + z

|
oz)= !
a-M/v ¥4(Zy)|

‘Fig. 1. Particular solutions of the integral equation.

The situation of the image plane z == z; now follows from the
ndition that any trajectory starting from a fixed point of the

olpject plane (value of g(zy) = v(2,)/V* (z,) given) should traverse

e image plane at the same point. The value of y(z;) must therefore

independent of y;, which results in the condition y,(z) = 0. By
uating to zero the left-hand member of (9) we thus arrive at a
Jation for the unknown z = z; which is simply a linear equation
we leave out of consideration the occurrence of z in the upper limits
integration. In this way we obtain

E73 k73 4 7
Z—/dL R (C)0(0—20) +/AL KO /AL () (6—L) (Gr—ro)—
= e ,(10)

L—/dERE)(E—20) +/dL kZ(C)deC (R(E) (E=80) (Gr—2o)— -

%0

hich relation does not determine the image plane explicitly owing

tqthe dependence of the integration limits on z,. In practice, however,

eyen in the case of an immersion lens the field is often already negli-
gible at the image plane, so that the limits { = z; may just as well be
rgplaced by a quantity independent of z; (for instance by that
cqrresponding to the edge of the field or by { = oo).

Approved For Release 1999/09/24 : CIA-RDP83-00423R002000130007-8
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422 1II. BREMMER

§ 5. The magnification. The magnification M can be derived from
the solution v,(z) according to the formula:

174
— Ve 06) = — a0

QI(Z:'L _

2:(%

M o= —

The minus sign indicates that M represents a positive quantity if
the electrons leaving an off-axis abject point in a meridional plane
do intersect the axis once (or occasionally an odd number of times)
before arriving at the image point (scc fig. 1). o

We could derive an expression for 4,(z;) and thus for M simply by
substituting z z= z; in (8). The resulting formula, however, would .
still depend on z;, which occurs both in the integrand and in the
integration limits of the various terms. A more uscful formula
without having z; in the integrands can be deduced from y,(z) by
taking into account the Wronski property relative to y, and y,, viz.

¥1(2) ¥2(2) — ¥(2) ¥i() = constant.

The value of the constant follows from the substitution z = zg,
remembering that v,(zg) = 1, v,(2) = 0 and y,(z,) = 1. Hence

¥1(2) y2(2) — y2(2) yi(2) = 1. (12)
A further application of (12) at z = 2, yields, in view of (11) and
vo(z) = 0,

P Vi) .
u F(z,) ¥yalz)- (13)

A series expansion for y,(z,) is casily derived from (9). The resulting
final formula for 1/37 bccomes

l o I‘Ii(zi) /“’ « 12 -
M Vi) {_ LA J Ao 6 (= 20) —
[z [ a5 B € — ) 6 — ) +
i ! L ’
+ [der) faz ) €—8) [ 5B G—m— |- (14

The magnification can be computed from this series without knowing
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L he exact situation of the image plane provided the ficld is negligible
there. In fact, in that case the upper limit of integration z; can be
replaced once again by oo or by the z-coordinate of the edge of the
field. _ '

~ The expansion (13) can be transformed into an other one, the
terms of which show a more symmetrical structure. The new expan-
sion is obtained by first shifting the factor of the integrand which
contains z, to the front by means of a number of reversals of orders
of integration. By additional reversals it proves to be possible to
obtain integrals the upper limit of which equals z;. The final expan-
sion then reads ‘
1 Viz)

M V)

5

{_ 1 +./‘dcl B(&y) (61— %) —

4

' ;fdé“l () (& _Zo)/déz R(G) (G — &) &

4

+ [dE R (&, _Z_o)/dczkz(éz) (sz‘cl)?[dgs R(C3) (L3 Cz)—---}- (15)
" 8 & '
We also give the corresponding series in practical units for magne-
tic lenscs. For these Ienses we have, according to (2),

00221
() =~ () (16)
i ! vV
if H and V are expressed in gauss and volt respectively. The first
few terms of (15) thus yield for the magnification by magnetic lenses

L 0.0221 d H2 -
e —I_fVF ,.Cl 12(1) (60— %) —
0.000488 [ o 1,079.1075
e —/_dé.l HZ(C1). (Q‘”%)v/dé‘sz(:z) (Co—C) + —
R 20 51 ’
a0 0 [ 420 8 P o2 07
k) ! & Za
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424 H. BREMMER

§ 6. The dependence of the osculating constants on the magnification.
The function £%(z) of (2) decrcases gradually on both sides of its
maximum without being zero at the object and image planes, There-
forc any clectron lens constitutes, strictly speaking, an immersion
ens. As a consequence it is impossible to define focal and cardinal
points which are independent of the special position of these planes,
though the dependence is negligible provided /*(z) is very small at
¥ = zpandz =z, Glaser?) introduced so-called osculating focal
ind cardinal points which take into account the influence of k*(z,)
hnd #%(z). His definitions are chosen such that the tangents at the
ntersections of the trajectories with z = Zy and z = z; show the
ame properties, in connection with the osculating elements, as the
ectilinear trajectorics in ordinary optics. A disadvantage of G1a-
$ ¢ r's definitions is that they do not apply to all electron lenses. In
Yhat follows we start from slightly different definitions which are
pplicable throughout and which arc identical with Glaset's
efinitionsinso far as the latter exist. Our definitions correspond, e.g.,
o that of the osculating clements used in planetary mechanics; in
he latter these elements determine the cllipse which approximates
cst the actual trajectory in the vicinity of the point under consider-
dtion.

The four osculating clements to be introduced here are the focal
Hjoints Iy and F; and the cardinal points H, and H, in object and

Ze2Z, 22y, ZeZy, 207
|

q

QI

Fig. 2. Showing the significance of the osculating elements.

—

hage space respectively; the focal distances f, = 21, — Zp,- and
|= 2 — zu; Will be defined as positive if the situation corresponds

that of fig. 2. The osculating clements are to be chosen in accord-
Icc with the concepts of clementary geometrical lens theory, that
is} such that the image Q' of the object point @ may be found as if

1
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the electron trajectories were straight lines. The corresponding situa-
tion as shown in fig. 2 recalls the well-known relations

gy — &py = M(ZFO — Zo)s 2, — ip; = M(2p; — Zm;)- (18)

In these equations %, z; and M are the only known quantities in our’
case. For a determination of the four unknown coordinates 2g,, Zr;
Zp, -and zy, fixing the osculating clements we need two further
relatlons The latter follow from the condition that the same oscula-,
ting elements should also apply to a second position of the object
plane (and the corresponding image plane) that is infinitely close to
the original one. This implies that (18) can be differentiated with
respect to z, while keeping zy,, 2n;, 47, and zp,; constant. In this way
we get the additional relations

dM dz; _ dM '
0 = (25, — %) EZ—O_M drg (2p; — 2u) P (19)
By solving the four unknowns from the four equations (18) and (19)
we obtain
n M dz
—= Z —_— = B —— ,
o = R (M dz, BT AT M dz, dzg -
, n M 4 M? 14+ M dy
- 2 _ = 2. — — R
Ho = 0 T g0y, 1= 5T AM | dz, da,

Further, the differéntial coefficient dz;/dz, can be connected with
M as follows. We consider an object plane z = 2, + 42, and a
corresponding image plane z = z; - 4z, differing from the original’
ones (for which Azy= Az, = 0). The quotient of any two particular
solutions of (1) assumes identical values at z = z, + 4z and
z = 2, + Az, a property which expresses the homogeneous character
of the magnication. An application of this property to the two
special solutions y, and v, (see fig. 1) yields

Yilzo + Azo) ¥,(2 - Az;) ~— V(20 + Azo) yl(zi_ + 4z) = 0.
Next we obtain from a differentiation with respect to 4z,
d4z _ yl(ZO + Azg) vz -+ Az) — yalzo + Az) ¥1(2 + Az
ddz, 3’1(20 -+ Azo) Vol#; -+ Az) —¥alzo + Azo) v + Az)’

We can pass.to the limit for Az, - 0, bearing in mind that y,(z,) =
== yy(z0) = 1 and y,(%) = ¥,(z) = 0. Hence dz;/dz, = yi(#) [ya(z),

Approved For Release 1999/09/24 : CIA-RDP83-00423R002000130007-8
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or, in view of (I11) and (13),
dz 2 {I (;:,r)}é
(I:o 1 (2y)
duce the focal distances f, = Iu, — 3R,
()fz” and :”i:

% Vi)Y AP
29 =+ - fpy = 2 { } -

dMds, Viz)) dMdz,’

M2 P M2
/0 = i1a : /1' ; { } AT :
4 dz, V) diidz,

infinity in the direction of the z-axis.

can be derived from

I A(1:3)
/o dz,

practical umt:.
KU

“n
=i

1 079.10°
+ V3
fo Zl
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A substitution into (20) leads to the following formulac if we intro-
and /[, = zp; — zy; instcad

These final expressions prove to be identical with those derived by
Glaser. For a comparison with the formulac of this author,
however, it is necessary to link 7 .- — g,(2;) to those particular solu-
tions of (1) that correspond to clectrons arriving at either side from

§ 7. Explicit formulae [or the oscilating conslants of magnetic lenses.
lixpansions similar to (15) can now be derived from (22) for the
osculating clements. The evaluation can be based on (15) and its
derivative with respect to z,. In the case of pure magnetic lenses we
have F(z) = F'(z), so that the focal distances /o = /; = M?(dM dz,)

I'rom a differentiation of (17) we obtain the following expansion in

1 0.0221 0000488
A / azir =00 | d:,H*‘(,.)/ 4 1) (e —2) +
N EM ¢
1.079.10 ¢ !
= / 05 ) [A3 TP ) a8, 1) ot
%o 7 i

0.0221 0. 000488
— 1) 2 { O gz — f 43 IP() (—2) (5 —0) +

/d,,HZ( 6005 ) et et — ). (21

-

b

M M

\ BT
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The second group of terms can be neglected if the field at the image ’
plane is very small. Otherwise we may consider these terms as cor-
rection terms which can be taken into account by substituting appro-
ximate values for M and z;. We emphasize that the number of inte-
grations occurring in the terms of the first group is lower than the
corresponding number in the conventional formulae ).

The positions of the focal and cardinal points can now be derived:
from (17) and (21) with the aid of the following relations, which
result from (18):

1M 14+ 1M
zFo:Z0+ﬁ =% + —1/'//7, 2, = % 1//’

The corresponding formulae for the elements of the image Space'
are always found by interchanging the role of z, and #;, which implies,
that M has to be replaced by 1/M. The explicit form of these for-
mulae is much simplified if the additional terms arising from the
field at the image (or object planc) may be neglected. In that case
we obtain, e.g., the following expression for the position of the
cardinal point in the object spacc: '

- N
Apy = D’

in which

~ 0.0221 ! 3
N = [aHE L= / dg, H'(6) &y f dg, H() (L— L) +

2 29 gl
0.000488 ; ; /
+ - Vz“A de] HZ(Cl) ledfzH2(52)(Cz—51)/d53[{2(53)(Caﬂcz)—- s
%0 U Lo

and
' 0021 [
p — [z e 22 [ az, ) [ 1) = 60

20 &
b3 2} g

0.000488 Y S S
T de, HAE) | Az HAG) (Go—8) | G HA(Ca)(G—Ca) - - - -

%o & Lo
For very fast electrons or very weak fields the first term of the
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428 PARAXIAL CONSTANTS OF ELECTRON LENSES

numerator and that of the denominator yicld a sufficiently accurate
approximation, viz.

SAL g ¢
2u, N:j‘;‘. -

[dSHA()

In this approximation both cardinal points have the same z-coor-
dinate as the centre of gravity of the part of the curve representing
I1? as a function of z that is bounded by the curve, the z-axis and
the ordinates z = zyand z = z;. It is striking that in such expressions
I1? and not I constitutes the dominating quantity,
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